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Abstract
Geocoding is often used to produce maps of disease rates from the diagnosis addresses of incident
cases to assist with disease surveillance, prevention, and control. In this process, diagnosis
addresses are converted into latitude/longitude pairs which are then aggregated to produce rates at
varying geographic scales such as Census tracts, neighborhoods, cities, counties, and states. The
specific techniques used within geocoding systems have an impact on where the output geocode is
located and can therefore have an effect on the derivation of disease rates at different geographic
aggregations. This paper investigates how county-level cancer rates are affected by the choice of
interpolation method when case data are geocoded to the ZIP code level. Four commonly used
areal unit interpolation techniques are applied and the output of each is used to compute crude
county-level five-year incidence rates of all cancers in California. We found that the rates
observed for 44 out of the 58 counties in California vary based on which interpolation method is
used, with rates in some counties increasing by nearly 400% between interpolation methods.

1. Introduction
Geocoding, or the process of translating textual information most commonly in the form of
postal addresses into geographic locations, is typically one of the first geocomputational
processes applied to enable spatially-based health science investigations[1, 2]. This process
provides health scientists with the ability to place individuals and groups within a
spatiotemporal context from which questions related to aspects such as geographic barriers
to health services can be posed and investigated [3, 4]. The use of geocoding within the
health sciences has a long history ranging from disease surveillance and outbreak
monitoring[5–10] to epidemiological investigations into the role and impacts that
environmental exposures have on human health[11–18].

Throughout this long history of using geocoding tools and geocoded data for health science
research, numerous researchers have identified many limitations in using these data in
scientific studies. These limitations are typically broken along two axes: (1) spatial accuracy
of the geographic location computed for any particular subject – the distance between the
output computed and the true location[18–26]; and (2) match rate achieved when geocoding
a large set of records– the number of records capable of being assigned output geocodes
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[19]. Each of these issues has been investigated on numerous occasions with researchers
consistently finding both to be non-randomly distributed across space, time, and population-
specific characteristics. Ignoring either of these issues typically results in studies containing
geographic bias, potentially invalidating the results[13, 23, 27–29]. The reason for this can
be seen in the standard data pipeline utilized in scientific practices displayed in [Figure 1.
The geocoding process and the geocoded data it produces are the underlying source upon
which all subsequent analyses are performed and conclusions are drawn. Therefore, any
errors in the production of these data are propagated throughout the rest of the scientific
pipeline.

As indicated on several occasions by numerous authors, the internal intricacies of a
geocoding system are known to greatly influence the quality of the results that can be
obtained, affecting both spatial accuracy and match rates[9, 19, 21–23, 30–32]. Most
geocoding systems in use today for health science applications can be considered black
boxes, where information or details describing the internal processing algorithms and/or data
sources used in the process are not described. This most often stems from commercial
reasons – to protect one’s product line, ensure long term utilization of the system, and
maintain a competitive advantage, it behooves a geocoding service or software provider to
release none but the most general of details about the platform. In practice, this means that
few details other than the reference data used are typically available.

This lack of technical detail and/or transparency of a vendor’s geocoding process would not
be a problem if geocoding was a simple, straightforward, error free process. However, this is
simply not the case as evidenced by the broad range of academic disciplines that have
contributed to our understanding and the development of geocoding techniques including
but not limited to geography and geographic information science[20, 31, 33, 34], computer
science[24, 35–37], and mathematics and statistics[38–41]. Published research reports
describe several competing geocoding techniques (see [42] for a review), and prior work has
described how a one-size-fits-all geocoding approach is simply not appropriate[19, 21–23].
To begin, a single input data set may exhibit a variety of characteristics known to perform
better with particular geocoding techniques due to the nature of geographic features and
addressing systems in a region[26, 43, 44]. For example, if a data set simultaneously
contains both urban and rural records, records for urban addresses where parcels are small
will perform better using parcel reference layers, while rural records may perform better
using street centerline reference files because parcels are large[23, 27–29]. Likewise,
different techniques and/or reference data sources may be appropriate given the time period
covered by an input data set to be geocoded, with historical records perhaps favoring
historical reference data layers[11, 45–49]. Finally, some techniques may simply be non-
applicable for a particular region because the required data sets just do not exist[50, 51]. For
example, if a digital parcel file is not available in a specific county, parcel-level geocoding
approaches are just not an option. Similarly, if a specific area of a rural county has not yet
upgraded to be E-911 compliant, it may be the case that Rural Route addresses are the only
street address-like information available, despite the well-known limitations of using these
data for geocoding[18, 42, 52–54].

The point here is that despite nearly 30 years of efforts devoted by a large group of
researchers from a broad range of disciplines starting from the earliest systems at the US
Census Bureau[33, 34, 55, 56], it is a fact that the process of geocoding is still error prone
and results in output with varying degrees of spatial inaccuracy and some amount of non-
matching records that affect match rates. Further, every geocoding system in use today will
produce a geocode output that is different than every other geocoding system. Research
reports show that these differences can be extremely small, or extremely large, but in all
cases depend on a myriad of intertwined aspects inherent to the geocoding algorithms and
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reference data layers available to and used within any particular geocoding process[19–23,
26, 30, 50, 57–59].

The primary goals of this paper are two-fold. The first is to continue to reinforce the
importance of understanding how one’s geocoded data are computed so that one may
intelligently reflect on whether one’s data are suitable for the use at hand. The second is to
provide an example of how the choice of geocoding tools and techniques can have impacts
on subsequent analyses. To achieve these goals, this paper presents an investigation on the
effects of administrative boundaries on the derivation of cancer rates in California. In
particular, this paper examines how the use of different techniques for computing the
centroid of an areal unit can have dramatic impacts on five year incidence rates of all
cancers reported at the county-level. The variability in county-level cancer rates (for all
cancers) is illustrated through the use of four different commonly-employed areal unit
interpolation techniques.

The term “interpolation” is used herein to mean the process of computing a single output
point from an input linear or areal unit geographic object. While the term interpolation has
other meanings, most notably to estimate the value of an attribute at a location where
observations are not available, our use herein follows that from the geocoding literature
which describe the feature interpolation component of a geocoding process[42, 60–62]. In
these definitions, the feature interpolation component is used across situs, linear, and areal
unit features to describe processes that manipulate geographic reference features using zero,
one, or more computations to produce a final geographic output for a geocode. In this same
light, we consider the computation of an areal unit’s centroid an application of an
minterpolation method. Although one can construct a definition of “interpolation” for which
computing a centroid would not be an application, the terminology used herein follows
directly from existing literature on geocoding processes[42, 60–62].

The remainder of this paper is organized as follows. Section 2 provides background on
cancer rates and reporting in California, a discussion of the interpolation options used in
geocoding systems, and details related to the problems associated with computing geocodes
using areal units, specifically ZIP codes. Section 3 describes the data sources and methods
used. Sections 4 presents the results achieved. Section 5 offers a discussion of interesting
findings and concludes the paper with final remarks.

2. Background
2.1 Cancer Rates and Reporting in California and the US

As in many states[7], the State of California has legislation in place that requires the
operation of a state-wide cancer registry system, the California Cancer Registry (CCR). The
goal of this system is to provide a population-based cancer surveillance system for use in
cancer prevention, treatment, and control. The CCR collects and provides data on cancer in
California to facilitate demographic and geographic analysis of factors that affect cancer
risk, early detection, and effective treatment of cancer patients as well as to help determine
where early detection, educational, and other cancer-related programs should be
directed[63].

This state-level entity is responsible for collecting, integrating, and assembling the county-
level cancer incidence data from each of three regional cancer registries in California (Los
Angeles, San Francisco/Bay Area, and Greater California)into a single state-wide database.
Each of these three regional registries gathers county-specific data for each of the 58
California counties it is responsible for. To do so, each registry performs various tasks
including finding, recording, abstracting, and reporting all cancer cases within their
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jurisdiction to the CCR. These data are gathered from hospitals, clinics, doctor’s offices and
other diagnosis and treatment facilities. Upon discovery, these data are cleaned, abstracted
(where a patient’s record is analyzed and “coded” to associate specific characteristics of
treatment, diagnosis, demographics, etc. with the record) and eventually submitted to the
CCR. In this manner, the CCR and the regional-level registries work together to provide an
accurate, complete, and up-to-date, picture of the burden of cancer in the State of California.

Before and after submission to the CCR by each of the regional registries, these data are
processed for quality control and quality assurance using a series of automated and manual
editing processes[64]. These checks are used to identify and correct known limitations in
reporting procedures, inconsistencies in cancer abstracts (the resulting synthesized and
coded report describing the cancer incidence case from all materials discovered about the
case), and highlight unlikely combinations of abstract details that may indicate a high
likelihood of an erroneous data value. At this stage, other processing techniques are applied
including geocoding to associate a geographic coordinate with the diagnosis address of the
cancer abstract. Geocoding for the CCR is performed by a third party vendor, the University
of Southern California Spatial Sciences Institute, using the USC Geocoding System [65].
The details of this system are described elsewhere so only those relevant to the current
experiments will be described in detail in Section 3. In addition to associating a latitude and
longitude pair for the diagnosis address, the USC Geocoding System also computes and
associates various US Census Bureau variables related to the diagnosis address including the
Census block group, tract, city, and county within which the diagnosis address falls.

Once processed, these data are used for cancer surveillance, prevention, and control at many
administrative levels including, among others, local-scale prevention efforts, state-wide
policy initiatives, and national-level activities[1, 66]. To enable the last of these, portions of
the CCR data are transferred to national-level entities. In order to maintain confidentiality of
cancer incidence data, detailed geographical identifiers (such as latitude and longitude) are
not provided to national-level identities. Instead, geographically aggregated data are
provided. In most cases, the only geographical identifier provided to national-level entities is
the census tract (CT). One national-level organization is the North American Association of
Central Cancer Registries (NAACCR), a national body composed of institutional and
individual cancer registry members spanning North America (including Canada)[67].
Among other roles, this organization is responsible for creating and implementing cancer
data standards, coordinating large-scale multi-state research projects, and facilitating the
derivation and dissemination of best practices with regard to data collection, organization,
and analysis.

2.2 Interpolation Techniques and Areal Unit Geocoding
Geocoding techniques typically fall within one of three classes based on the type of
geographic objects contained within the geographic reference layers used by the system:
situs, linear, and areal unit features[42, 54, 62].

Situs Features—The first, those that use situs – single point – reference data features
include pre-derived lists of building centroids or address points as would be contained in
E-911 databases[1, 53]. Here, the geocoding process simply has to identify the most likely
match between the input address and the geographic items in the reference data layers and
return the matched geographic object directly; no form of interpolation is required to
produce an output from the geographic footprint associated with the reference object
matched to, simply because the geographic object is a point and can be returned directly.
Unfortunately, although these types of situs reference layers are typically on the higher end
of the spatial accuracy scale and should be used wherever and whenever possible, these data
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sources often require enormous amounts of field work and/or manual labor to produce and/
or maintain and are as such sparsely available[52, 68].Geocoding approaches that return
“Rooftop Geocoding” commonly employ situs reference data layers representing pre-
computed building centroids that are returned for an address.

The second two classes, linear and areal unit features are far more commonly encountered
and both share the same characteristic that each requires some form of interpolation to be
applied on a matched reference feature in order for a point output to be returned.

Linear Features—The first of these, linear features, include the most common source of
geographic reference data used in geocoding – street centerline databases. These databases
are composed of street segments with associated address ranges describing the set of valid
house numbers along each side of the street in addition to the other street address
components required to describe an address (street name, street suffix, street pre- and post-
directional, city, ZIP code, etc.)[42, 60]. First developed at the US Census Bureau in the
1970s, the Dual Independent Map Encoding (DIME) format for representing street segments
is still in use today and is the most common format of geographic data employed in
geocoding systems[33, 34, 55, 56]. The main reason for this is that the US Census Bureau
publishes the TIGER/Lines files, a free and regularly updated street segment database with
near-complete coverage across the entirety of the US including the majority of the US
territories and other outlying islands[69]. While many research reports have shown that there
are definite errors and inconsistencies present in the TIGER/Line files that are known to
impact geocoding spatial accuracy and match rate completeness[31, 58, 59, 70], these files
nonetheless continue to form the foundation for numerous commercial and research
geocoding systems. Enhanced versions of street centerline databases are available from
numerous commercial vendors which offer increased spatial accuracy for the geometries of
the underlying reference features most commonly in the form of additional interior points
along a polyline that describe the curvature of the street, increased completeness in terms of
non-spatial attributes such as alternative names for streets, and more precise and up-to-date
inclusion of changes, removals, and/or additions to street networks as transportation routes
in a region grow, shrink, or are otherwise altered. Unfortunately, the price tag associated
with these commercial versions is often out of reach of many geocoding researchers and
developers and thus are not included in freely available geocoding systems; hence the
continued use of TIGER/Line files.

Regardless of what linear reference data file is included, all systems using these types of
reference data layers must perform linear interpolation to produce a final point output drawn
from the geography and non-spatial characteristics of the reference street segment matched
to[54, 58]. Most commonly in this process, a proportional distance down the length of the
reference feature is used based on the ratio of the input address to the number of addresses
associated with the street segment. The output point is first computed at the corresponding
proportional distance along the geometry of the reference feature and then an offset is
applied to move the output orthogonally to one side of the street or the other depending on
the parity (even/odd) of the input address and each side of the reference feature[54, 58]. This
process is known as address-range interpolation [35] and has been shown on numerous
occasions to be rife with assumptions whose resulting error magnitude depends on many
aspects such as the rural/urban nature of the region[27–29], the size of the parcel and/or
density of addresses[54], and the number, size, and orientation of lots along a street [35].
Because of this, additional data is often brought into the process to enhance the linear
interpolation technique; however, the underlying approach of selecting (i.e., interpolating) a
location somewhere along or nearby the reference street feature still remains[35].
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Areal Unit Features—The final type of reference data layers used in geocoding systems
are composed of areal unit features. Areal units can be described simply as a polygon
geographic object, or any geographic object that has an interior area. Counted among these
classes of geographic features would be digital parcel, ZIP code, city, county, and state
boundary lines in addition to any other type of geographic area that can be uniquely
identified such as a database of building footprints, or more specifically, a list of hospital or
prison footprints. As should be obvious from the diverse and varied list of types of
geographic objects that fall into this category, areal unit-based geocoding forms the basis of
some of the most-(e.g., building footprint-level) and least-accurate (e.g., city-centroid)
geocoding approaches available. At one end of the spectrum are extremely detailed and
high-resolution (small-scale) geographic features such as digital parcel boundaries and exact
building footprints, which, if available and capable of being matched to, would result in
highly precise geocode output in many instances for urban addresses [54]. At the other end
are low-resolution (large-scale) geographic features such as state and county boundaries that
provide little in the way of high precision geocoded results. Unfortunately, as with linear
reference feature data layers, the extremely detailed areal unit layers that would provide
ideal data sources for use in geocoding systems are often hard to come by. Digital parcel
layers are available on a commercial basis either directly from local County Assessor’s
Offices or through third party vendors who have contracts with these groups; however,
reports indicate that these files are only available for 88% of the US at present[71], and
prices for obtaining them on a national basis are often prohibitive. Building footprints are
even harder to obtain and are only available for a handful of cities nationwide.

Similar to linear features which use a single linear interpolation method regardless of if the
underlying reference features are high- or low-resolution, areal unit features also
traditionally have a finite set of interpolation techniques that can be applied to produce a
point output from a reference feature. These methods all compute and return the “centroid”
of a geographic feature, but the means by which the centroid is computed can vary. The first
and most common of these is the Bounding Box (BB) method([Figure 2a), also known as
the Minimum Bounding Rectangle (MBR) method, in which the minimum and maximum
latitude and longitude values associated with any point on the boundary of the object are
used to compute a value halfway between the top, bottom, left, and right sides of the
polygon. The BB method has the advantage that it is extremely fast to compute and is easily
implemented within geocoding systems.

The second method, the Geometric Centroid ([Figure 2b), also known as the Center of Mass
(CoM) method differs from the BB method because it uses one or more physics-based
calculations to determine where the centroid of the geographic object would be[72, 73].
According to Worboys the “centroid of an areal object is the point at which it would balance
if it were cut out of a sheet of material of uniform density” [74, pp 214]. This method of
computation is also straightforward for regular polygons, but is more time consuming and
computationally complex than a simple BB operation (see [74, pp 214]).

The third method is the weighted centroid method. This method is used to bias the geometric
centroid of the object toward an area that contains a higher concentration of a value of
interest[75]. In geocoding research, the centroid of an areal unit is often weighted using
population density to influence the output location to be closer to where a higher percentage
of the population lives. The intuition behind this approach is that if the output is closer to
where more of the people in the region live, then there is a higher chance that the person
(and/or location) of interest will be closer to the weighted centroid then farther away. This
method is by far the most computationally complex and time consuming; however, it is
often reported in research as providing more accurate geocode output than either the BB or
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the CoM methods, and is thus used frequently across many disciplines that utilize geocoded
data[75–78].

2.3 Limitations of Areal Unit Geocoding in Disease Rates
Areal unit-based geocoding has several shortcomings that are both common to all geocoding
techniques as well as specific to the characteristics of areal units. Many of these limitations
have direct effects on the computation of disease rates when these data are included and
become especially pronounced with the output of areal unit geocoding is used in a point-
inpolygon intersection approach to associate the geocode output with areal units from other
data layers such as county boundaries or census tracts. Our discussion herein does not
address implications of boundary error on polygon-in-polygon (polygon intersection)
operations because the current research is intended to address one-to-one associations
(cancer case to a single administrative unit), and polygon intersection approaches can result
in one-to-many (one case to many administrative units). Although we would argue that a
many-to-many association could be beneficial in many disease reporting, surveillance, and
research scenarios, we know of few where this has been put into practice.

False Clusters—The majority of areal unit interpolation approaches utilized in geocoding
techniques are deterministic. That is, they always produce the same result given the same
input. The alternative to this would be a probabilistic interpolation approach that could result
in two different outputs given the same two inputs. By virtue of being deterministic, areal
unit interpolation approaches at the ZIP code or city level often result in false clusters of
high disease incidences[27–29]. The reason for this is that all cases with the same city or
ZIP code are all placed at the exact same location, stacking up on top of each other and
giving the appearance that a cluster exists when in reality one may not if better geocodes
could be determined from the street address associated with the case. However in many
instances, ZIP code or city level geocodes are the best that can be computed. PO Boxes are
one example of this as are Rural Route addresses although the latter are being phased out of
practice as E-911 databases are developed throughout the US[28, 43, 79].

Spatial Uncertainty—The fundamental limitation of utilizing areal units in a geocoding
process is that one must compute a single geographic location as output from the whole of
the area associated with the areal unit. No matter what approach is taken (BB, CoM, or
Weighted Centroids), there will always be some uncertainty as to whether the location
chosen was the correct one[24]. This problem exists in linear interpolation methods and to
some extent in situs reference data layers as well because even for building centroids, one
single point must be selected from all possible locations along the rooftop or street
centerline. However, because areal unit reference data layers such as boundaries for ZIP
codes and cities generally contain large geographic features, the spatial error (or uncertainty)
associated with the output location is often larger than that associated with street centerline
geocoding[28, 80]. When parcels are used in urban areas, the spatial uncertainty associated
with an output geocode can often be lower than a corresponding linear interpolation-based
output[54]; however, the same cannot be said as confidently in rural areas[81, 82].The
spatial uncertainty associated with each geocode is typically not included in the computation
of disease rates, although recent research reports have made calls for it to be included [24].
The proposed quantitative approaches to describing uncertainty as equally distributed across
the full area of the areal unit would some what overcome the false clustering described
above because although they would still output the same geographic location at the ZIP code
level given two addresses in the same ZIP code, each would have a low confidence score of
being in the correct location which could be used to weight a level of confidence for disease
rates based on them[24, 37].
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Inside/Outside Centroids—A further limitation of areal unit geocoding is that the
centroid computed may lie outside of the boundary of the polygon if it has an irregular shape
[83]. Here, assuming that the reference data layer comprises a surface of polygons without
gaps or holes (aside from the boundary extent of the reference layer), the computed centroid
of the areal unit may fall within the boundary of another neighboring areal unit. If the
geocode resulting from this process were to be used in a point-in-polygon intersection to
associate some other value with the point to compute disease rates by an aggregate real unit
(such as rates by county or census tract), this artifact of the areal unit geocoding process
would result in misclassification of the geocode.

Non-Applicable Centroids—Additional problems can occur when the centroid of an
areal unit is placed within the boundary of the areal unit but at a location which would be
considered invalid due to non-applicability. This affects processes that are applied to these
geocoded data such as point-in-polygon intersections with other data layers. This type of
error commonly occurs when the centroid of an areal unit is placed within a water body
when the query of interest is to associate census tract values with the output. Here, it may be
the case that no census tract covers the water region (in the case of a coast line) and thus it
would be impossible to find a census tract to intersect with the geocoded location. Here, the
nearest census tract is often chosen, which may or may not be an appropriate decision given
the requirements of a particular study. When computing disease rates in particular, this
practice can result in the unrealistic appearance of clusters at these locations which were
only chosen because they happen to be the closest to the centroid of the areal unit.

Cross-Boundary Centroids—A final problem with the use of areal units for geocoding
relates to reference features that cross the boundaries of areal units in other reference data
layers such as a ZIP code crossing two or more county boundaries. This also suffers from
the same problems listed above in that misclassification of a value is assigned to an output
geocode following a point-in-polygon intersection. This problem is particularly troubling
when computing county-level disease rates because it may not always be clear which county
the centroid of a ZIP code should rightfully be placed in. Should it be the county with a
greater proportion of the area of the ZIP code? Should it be in the county with a greater
amount of the population? An example of this is shown in [Figure 3 for the ZIP code 95469
which crosses the administrative boundaries of the two counties in California –Mendocino
and Lake Counties.

3. Experimental Design
Stated again, the main goal of this article is to evaluate the magnitude and effects of utilizing
areal unit geocoding in the derivation of disease rates in order to understand how sensitive
these rates are to the methods used by the geocoding process. In our experiments, we chose
the ZIP code level areal unit as the target geographic output level for two reasons. First,
there is a plethora of existing literature on the applicability and use of ZIP code data in the
geocoding process as applied to health-related research which provides a solid context
within which we can place our work (see [80] for a detailed review). Second, due to privacy
and confidentially concerns of transmitting health-related data with personally-identifiable
attributes, ZIP code level data are often computed, transferred, and utilized by researchers
and policy-makers as a safe alternative to address-level data. This second reason should by
no means be seen as an endorsement of this practice – there is still little if any consensus
among researchers in the geographic confidentiality and privacy domain that this is an
appropriate level of obfuscation[1, 84–86]. Nonetheless, the ZIP code level of aggregation is
commonly used in health-related research so the analysis of this level of geographic data
presented herein should serve to offer guidance to those who partake in this practice[87–89].
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One important aspect to note is that the experiments presented herein compute crude, five
year aggregate incident rates. These are different than standardized rates typically seen in
annual reporting of cancer incidence, so the results described here will differ from other
published reports such as those from the California Cancer Registry.

3.1 Data Sources
Case Data—ZIP code level data on all cancer cases diagnosed in the State of California for
the five year period January 1, 2006 through December 31, 2010 were obtained from the
CCR (n=730,124). These data included cases originally geocoded at all “levels” (street
match, ZIP centroid, etc.). These data also included records that originally included standard
street level addresses such as the hypothetical “123 Main Street” in addition to more
challenging records such as those that originally listed PO Box addresses as well as other
errors or omissions such as the street address being listed as “UNKNOWN”. Only the ZIP
code associated with these records were provided by CCR; street addresses, PO Boxes and
cities were not included. Each unique ZIP code was listed once along with an attribute that
described the count of cases within that ZIP code.

Geographic Data—The 2010 US Census Bureau Zip Code Tabulation Area (ZCTA)
boundary file for California was used to compute ZIP code centroids as described below.
The 2010 US Census Bureau County boundary file for California was used to assign each
geocode output to a county as described below. Both files are available as part of the 2010
US Census Bureau TIGER/Lines set of files [69] and are commonly used throughout
geocoding research, development, and practice as well as spatially-based health related
research due to their free price tag, their nationwide coverage, and their routine updating.

It should be noted here that there is a difference between USPS ZIP codes and the US
Census Bureau’s ZCTAs. The first represents a postal delivery route without a true
geographic boundary, whereas the second is an approximation made by the US Census
Bureau of the former. Numerous research reports discuss the pros and cons of using both of
these within geocoding and health science research; the interested reader should see [28, 80,
90] and the references within for a full discussion of the strengths, weaknesses, and
limitations of using either in health-based analyses. For the purposes of this study – to
examine the impact of varying interpolation methods on disease rates – the use of ZCTAs is
sufficient to illustrate our point. Further, these data are readily available at no cost, so other
researchers may easily replicate, validate, or employ our methods to achieve similar results.
From this point forward, the words ZIP code and ZCTA will be used interchangeably.

3.2 Methods
Interpolation Methods—Four methods were used to compute ZIP code centroids for
each of the case ZIP codes and the output from each method was assigned to the county
within which the output fell. Three of the four rely on the Esri ArcGIS platform [91],
whereas the fourth utilizes the Microsoft .Net programming framework[92]. The first
system, ArcGIS, is an industry standard GIS platform with a reported million plus users
worldwide that is in common use in spatially-based health investigations. ArcGIS has over
700 built in spatial analysis, modeling, and visualization tools that can be applied to any
number of research questions; this project makes use of two of them (described below).

The second system, the .Net framework, is one of the underlying components of the
Microsoft Windows operating system and is by many accounts the platform of choice for
developing custom built software for Windows machines. As part of the libraries accessible
to a developer using .Net, Microsoft provides a suite of geographic data types upon which
geographic operators can be applied. These geographic operators include standards-
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compliant instantiations of many of the Open Geospatial Consortium (OGC) set of
geographic operators, including ST Centroid() which computes the centroid of an areal unit.

1. ArcGIS “Polygon to point”, within “inside” option selected. The approach
computes the geometric centroid of the areal unit and enforces that the output point
must be contained within the input polygon.

2. ArcGIS “Polygon to point”, within “inside” option not selected. This approach
computes the geometric centroid of the areal unit, but does not enforce that the
output point must be contained within the input polygon.

3. ArcGIS “Feature envelope” and ArcGIS “Polygon to point”. This approach first
computes the bounding box of the areal unit and then computes the geometric
centroid using the same ArcGIS operator as the first two approaches. The “inside”
option was selected but would not make a difference in this case because a
bounding box is a regular polygon and therefore the centroid will always be within
the bounding box by definition.

4. .Net “ST Centroid()”. This approach creates an in-memory geospatial object from
the boundary of the areal unit and calls the .Net built-in ST Centroid() method
which computes the geometric centroid of the areal unit. This method does not
enforce that the output point will be within the input polygon.

Although Census data describing where populations reside within regions are available, the
use of weighted centroid techniques is not common in geocoding systems due to the
computational and time complexities described earlier. Hence, population weighted-centroid
methods were not included in the present research because the choice was made to evaluate
the most commonly used methods applicable to a wide breadth of geocoding systems.

County Intersection Methods—County codes were associated with the output geocode
for each of the above four methods within ArcGIS using the “Spatial Join” operator. This
approach uses a point-in-polygon intersection method to associate the county code from the
county areal unit within which a geocode output falls.

4. Results
4.1 Geocoding Match Rates at the ZIP Code-Level

A first step in the ZIP code-level geocoding approach described here is to analyze the
characteristics of the input data. To do so, we first note that the input case data for the five
year period used here contained 2,515 unique ZIP codes. Descriptive statistics of the
characteristics of incidences per ZIP code over the five year period are shown in[Table 1.
The cumulative distribution of record incidences per ZIP code over the five year period
shown in [Figure 4 reveals that 25% of the ZIP codes have ten or fewer cases reported and
50% of the data have 60 or fewer.

A next informative step is to investigate the match rates achievable using the US Census
Bureau ZCTA files as a reference data source. 1,667 (66%) of the 2,515 input ZIP codes
successful matched to a ZIP code in the ZCTA reference data layer. This means that 34% of
the ZIP codes associated with ZIP codes listed on case records were not locatable in the
ZCTA reference data file. The case counts associated with these ZIP codes account for 3.3%
(n=24,136) of the total records for the five-year period. The cumulative distribution
frequencies shown in [Figure 5 for the counts of cases ZIP codes that were unmatchable
reveals that 50% all unmatchable ZIP codes have only one cases located within them. The
fictitious ZIP code 99999 used by CCR to indicate that the ZIP code for case records is not
known accounted for 2,065 of these records that could not be matched.
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4.2 ZIP Code Centroid County Value Changes
2% (41) of the unique ZIP codes associated with the case data for the five-year period were
affected by the difference in areal unit centroid derivation method. The affected ZIP codes
along with the counties between which the computed centroids changed and the number of
cases impacted over the five-year period are listed in [Table 2. The geographic distribution
of these ZIP codes is displayed in [Figure 6 which also indicates the number of records
affected.

A specific example of a ZIP code 93514 which resulted in the assignment of three different
counties is shown in [Figure 7. Here, the .Net centroid method results in Mono County, the
ArcGIS MBR method results in Fresno County, and both the ArcGIS Within and ArcGIS
Not-Within result in Inyo County.

4.3 County-Level Cumulative Five Year Incidence Rate Variation
44 out of the 58 counties in California (76%) have cumulative five year incidence rates that
changed based on the method used to compute the areal unit centroid. The 44 counties for
which rates changed are listed in [Table 1. These results show that Mono and Inyo counties
have the highest levels of changes between each of the four methods at ~3% and 2%
changes, respectively.

The 13 counties for which no rate change were observed are listed in [Table 4. These
include some of the largest (Los Angeles, San Diego) and smallest (Alpine, Del Norte)
counties in California. The levels of change of incidence rates over the five year period are
shown in [Figure 8.

5. Discussion & Conclusions
This article has presented an evaluation of how county-based cumulative five year incidence
rates of cancer are affected by assignment of ZIP code-level incidence counts. Using five
years of data on all cancer cases diagnosed in the State of California from the California
Cancer Registry, crude cancer incidence rates were derived using four different methods of
area unit interpolation at the ZIP code-level. From these experiments, it is interesting to
observe that 76% of the counties in California have incidence rates that change depending
on the method of areal unit centroid computation; only 13 out of the 58 counties in
California have rates that remain stable regardless of the method used.

Although the actual amount by which the incident rates change across all counties was
small, ranging from 0 to only 2.8%, these numbers represent dramatic increases in overall
rates when considering the difference between the set of cancer rates produced using each
method. For example, Mono County five year incident rates increase from 1.3 to 4.1% of the
population, close to a 400% increase in disease rates. Yolo County saw similarly high five
year rate increases, from 0.95 to 2.95% incidence rate. However, across all of the counties
for which variations in rates were observed, the average rate change was only 0.28%. This
indicates that although five year incidence rates in specific counties are greatly affected
when the number of incidences (numerator) and size of the underlying population
(denominator) are both small, most counties in California have rates that are relatively stable
across available interpolation methods.

The analysis performed here revealed no clear geographic patterns of where these rate
changes occur or how large the magnitude of those changes could be. The 41 ZIP codes that
were affected were distributed across the entire state and the number of records affected by
each ZIP code did not exhibit any clear geographic pattern.One thing which is clear from
this analysis is that the shape of the area to be geocoded (e.g. ZIP code) and its proximity to
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the target geography border (e.g. county) will be important determinants of sensitivity to
centroid calculation and assignment to target geography. Further research should be
performed to shed additional light on why and how these ZIP codes behave in this manner
so that researchers can predict areas where these types of problems may occur and prompt
closer inspection of the data to ensure correctness.

The experiments and analysis presented here have two important limitations. The first
limitation is that we used all cancers instead of site-specific cancers. The reason for this is
that the goal of the current research was to demonstrate the magnitude of problems
stemming from different interpolation techniques, and all cancers suffice for this aim. Future
work should examine how the use site-specific cancers impacts misclassification and rates
of disease. We anticipate that when a site-specific cancer is uniformly distributed across
California, the amount of misclassification as a proportion of all site-specific records would
decrease, simply because the number of cases would be lower. However, if a site-specific
cancer exhibits a clustering behavior at specific locations, misclassification could account
for a large proportion of records when the location of the cluster happens to be in one of the
areas subject to the boundary errors found here. Our recommendation in the case of site
specific clusters would be to investigate the sensitivity of the cluster location to these
boundary errors.

The second limitation of the current work is that we compute crude five year estimates of
disease rates. Epidemiological analysis is typically conducted on rates that have been filtered
and/or smoothed in some fashion to account for the small number problem[93]. The results
we present here represent a worst-case scenario for misclassification errors due to varying
interpolation techniques. It is conceivable that the differences between interpolation methods
could be greatly reduced after noise filtering. Further research should be performed to assess
the scope, magnitude, and implications of using smoothing approaches in conjunction with
each of the interpolation methods.

Despite these limitations, the findings of our experiments confirm historical, recent, and
recurring conclusions of other researchers who have found that the specific inner-workings
of any particular geocoding system can have large impacts on the results of research projects
based on geocoded data[18, 19, 21–23, 26, 30, 44, 57]. In this particular case, we
investigated crude five year cancer incidence rates as an example of disease rate
computations which is used to inform policy decisions at the local, regional, and national
levels. Based on our findings, it is conceivable that two different researchers or agencies
applying two different geocoding techniques could determine cancer incidence rates nearly
four times the magnitude of each other. Our results show that depending on the geocoding
method used, it could appear that either a 400% reduction or increase of cancer incidence is
observed. This could have major impacts on the allocation of funding, outreach, or
prevention activities as well as analyses that asses the effectiveness of these programs.

The unfortunate reality is that every geocoding process used by a researcher, agency, or
policy maker is likely to utilize different data sources, interpolation methods, or other
internal algorithms that can affect the quality of the results. As we have shown here, even
when a single reference data layers (US Census Bureau ZCTA boundaries) along with
allegedly comparable interpolation techniques – ArcGIS non-within and .Net ST Centroid
should both produce the same output because they claim to perform the same task – large
differences in output can be and are often observed. In many instances it is difficult to say
which method should be used or should produce the most accurate results, so in practice few
users care or know which approach is being utilized. However, the findings presented in this
article should serve to motivate geocoding users to peek under the hood of their geocoding
systems to see what is truly going on if they are to understand the opportunities and

Goldberg and Cockburn Page 12

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



limitations present in their data. These same users need to make loud and frequent calls to
geocoding system developers to expose metadata about the inner-workings of geocoding
systems as well as provide flexibility in what geocoding algorithms are utilized under what
circumstances.
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Figure 1.
Geocoded data pipeline and error propagation in environmental exposure studies
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Figure 2.
Three different methods of computing a centroid for a hypothetical areal unit: a) bounding
box; b) geometric centroid; and c) weighted centroid
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Figure 3.
Example of ZIP code 95469 which crosses the county boundaries of Mendocino and Lake
Counties
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Figure 4.
Cumulative frequency distribution of cases per ZIP code; 2006–2010
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Figure 5.
Cumulative frequency distribution of cases per ZIP code for unmatchable ZIP codes; 2006–
2010
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Figure 6.
Geographic distribution of ZIP codes affected by different areal unit computation; 2006–
2010
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Figure 7.
Example ZIP code 93514 resulting in three different county assignments: Mono, Fresno, and
Inyo Counties
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Figure 8.
Levels of percent change in cumulative five year incidence rates across methods; 2006–2010
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Table 1

Descriptive statistics of the counts of cases per ZIP code; 2006–2010

Minimum 1

Maximum 2082

Mean 290

5% trimmed mean 252

Median 62

Standard deviation 377
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Table 4

Counts and cumulative five year incidence rates of cases by county for counties that do not vary between
methods (1–4); 2006–2010

County Population Count
(1–4)

Rate (%)
(1–4)

Alpine 1,208 20 1.66

Del Norte 27,507 680 2.47

Imperial 142,361 2,405 1.69

Los Angeles 9,519,338 171,726 1.80

Mariposa 17,130 508 2.97

Orange 2,846,289 56,420 1.98

San Diego 2,813,833 58,746 2.09

San Francisco 776,733 19,429 2.50

San Joaquin 563,598 11,809 2.10

San Mateo 707,161 17,553 2.48

Santa Clara 1,682,585 34,708 2.06

Santa Cruz 255,602 5,544 2.17

Tehama 56,039 2,549 4.55

Ventura 753,197 18,054 2.40
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